Search results for "pimeä aine"
showing 10 items of 39 documents
PBH assisted search for QCD axion dark matter
2022
The entropy production prior to BBN era is one of ways to prevent QCD axion with the decay constant $F_{a}\in[10^{12}{\rm GeV},10^{16}{\rm GeV}]$ from overclosing the universe when the misalignment angle is $\theta_{\rm i}=\mathcal{O}(1)$. As such, it is necessarily accompanied by an early matter-dominated era (EMD) provided the entropy production is achieved via the decay of a heavy particle. In this work, we consider the possibility of formation of primordial black holes during the EMD era with the assumption of the enhanced primordial scalar perturbation on small scales ($k>10^{4}{\rm Mpc}^{-1}$). In such a scenario, it is expected that PBHs with axion halo accretion develop to ultracomp…
Electroweak baryogenesis from a dark sector
2017
Adding an extra singlet scalar $S$ to the Higgs sector can provide a barrier at tree level between a false vacuum with restored electroweak symmetry and the true one. This has been demonstrated to readily give a strong phase transition as required for electroweak baryogenesis. We show that with the addition of a fermionic dark matter particle $\chi$ coupling to $S$, a simple UV-complete model can realize successful electroweak baryogenesis. The dark matter gets a CP asymmetry that is transferred to the standard model through a $CP\ portal\ interaction$, which we take to be a coupling of $\chi$ to $\tau$ leptons and an inert Higgs doublet. The CP asymmetry induced in left-handed $\tau$ lepto…
Microlensing constraints on axion stars including finite lens and source size effects
2021
A fraction of light scalar dark matter, especially axions, may organize into Bose-Einstein condensates, gravitationally bound clumps, "boson stars", and be present in large number in galactic halos today. We compute the expected number of gravitational microlensing events of clumps composed of the ordinary QCD axion and axion-like-particles and derive microlensing constraints from the EROS-2 survey and the Subaru Hyper Suprime-Cam observation. We perform a detailed lensing calculation, including the finite lens and source size effects in our analysis. We constrain the axion mass in terms of the fraction of dark matter collapsed into clumps, the individual clump densities, and the axion self…
Can QCD Axion Stars explain Subaru HSC microlensing?
2021
A non-negligible fraction of the QCD axion dark matter may form gravitationally bound Bose Einstein condensates, which are commonly known as axion stars or axion clumps. Such astrophysical objects have been recently proposed as the cause for the single candidate event reported by Subaru Hyper Suprime-Cam (HSC) microlensing search in the Andromeda galaxy. Depending on the breaking scale of the Peccei-Quinn symmetry and the details of the dark matter scenario, QCD axion clumps may form via gravitational condensation during radiation domination, in the dense core of axion miniclusters, or within axion minihalos around primordial black holes. We analyze all these scenarios and conclude that the…
Euclid preparation XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis
2022
The combination and cross-correlation of the upcoming $Euclid$ data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of $Euclid$ and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on $Euclid$-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and…
Primordial dark matter from curvature induced symmetry breaking
2020
We demonstrate that adiabatic dark matter can be generated by gravity induced symmetry breaking during inflation. We study a $Z_2$ symmetric scalar singlet that couples to other fields only through gravity and for which the symmetry is broken by the spacetime curvature during inflation when the non-minimal coupling $\xi$ is negative. We find that the symmetry breaking leads to the formation of adiabatic dark matter with the observed abundance for the singlet mass $m\sim{\rm MeV}$ and $|\xi|\sim 1$.
Shining primordial black holes
2021
We study the well-motivated mixed dark matter (DM) scenario composed of a dominant thermal WIMP, highlighting the case of $SU(2)_L$ triplet fermion "winos", with a small fraction of primordial black holes (PBHs). After the wino kinetic decoupling, the DM particles are captured by PBHs leading to the presence of PBHs with dark minihalos in the Milky Way today. The strongest constraints for the wino DM come from the production of narrow line gamma rays from wino annihilation in the Galactic Center. We analyse in detail the viability of the mixed wino DM scenario, and determine the constraints on the fraction of DM in PBHs assuming a cored halo profile in the Milky Way. We show that already wi…
Despicable dark relics: generated by gravity with unconstrained masses
2019
We demonstrate the existence of a generic, efficient and purely gravitational channel producing a significant abundance of dark relics during reheating after the end of inflation. The mechanism is present for any inert scalar with the non-minimal curvature coupling $\xi R\chi^2$ and the relic production is efficient for natural values $\xi = {\cal O}(1)$. The observed dark matter abundance can be reached for a broad range of relic masses extending from $m \sim 1 {\rm k eV}$ to $m \sim 10^{8} {\rm GeV}$, depending on the scale of inflation and the dark sector couplings. Frustratingly, such relics escape direct, indirect and collider searches since no non-gravitational couplings to visible ma…
Can Primordial Black Holes as all Dark Matter explain Fast Radio Bursts?
2021
Primordial black holes (PBHs) are one of the most interesting nonparticle dark matter (DM) candidates. They may explain all the DM content in the Universe in the mass regime from about $10^{-14}M_{\odot}$ to $10^{-11}M_{\odot}$. We study PBHs as the source of fast radio bursts (FRBs) via magnetic reconnection in the event of collisions between them and neutron stars (NSs) in galaxies. We investigate the energy loss of PBHs during PBH-NS encounters to model their capture by NSs. To an order-of-magnitude estimation, we conclude that the parameter space of PBHs being all DM is accidentally consistent with that to produce FRBs with a rate which is the order of the observed FRB rate.
Merger of dark matter axion clumps and resonant photon emission
2020
A portion of light scalar dark matter, especially axions, may organize into gravitationally bound clumps (stars) and be present in large number in the galaxy today. It is therefore of utmost interest to determine if there are novel observational signatures of this scenario. Work has shown that for moderately large axion-photon couplings, such clumps can undergo parametric resonance into photons, for clumps above a critical mass $M^{\star}_c$ determined precisely by some of us in Ref. [1]. In order to obtain a clump above the critical mass in the galaxy today would require mergers. In this work we perform full 3-dimensional simulations of pairs of axion clumps and determine the conditions un…